NUMPY
CÁC CHỦ ĐỀ
BÀI MỚI NHẤT
MỚI CẬP NHẬT

Thông báo: Download 4 khóa học Python từ cơ bản đến nâng cao tại đây.

Cách sử dụng hàm all() trong NumPy

Trong bài viết này, bạn sẽ học cách sử dụng hàm numpy all() để kiểm tra xem tất cả các phần tử trong một mảng có đánh giá là True hay không. Hàm numpy all() là một công cụ hữu ích trong việc xử lý và phân tích dữ liệu, giúp bạn dễ dàng xác định tính hợp lệ của toàn bộ tập hợp dữ liệu. Chúng ta sẽ đi qua các ví dụ cụ thể để hiểu cách hàm này hoạt động và cách áp dụng nó vào các tình huống thực tế.

test php

banquyen png
Bài viết này được đăng tại freetuts.net, không được copy dưới mọi hình thức.

Giới thiệu về hàm all() trong Numpy

Hàm numpy all() trả về True nếu tất cả các phần tử trong một mảng (hoặc theo một trục cụ thể) đều đánh giá là True.

Dưới đây là cú pháp của hàm all():

numpy.all(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)

Trong cú pháp này, a là một mảng NumPy hoặc một đối tượng giống mảng như một danh sách.

Bài viết này được đăng tại [free tuts .net]

Nếu mảng đầu vào chứa tất cả các số, hàm all() trả về True nếu tất cả các số đều khác không hoặc False nếu ít nhất một số là không. Lý do là tất cả các số khác không đều đánh giá là True trong khi số không đánh giá là False.

Ví dụ về hàm all() trong Numpy

Hãy xem một số ví dụ về cách sử dụng hàm all().

Sử dụng hàm numpy all() với mảng 1-D

Ví dụ sau sử dụng hàm all() để kiểm tra xem tất cả các số trong một mảng có khác không không:

import numpy as np

result = np.all([0, 1, 2, 3])
print(result)

Kết quả:

False

Kết quả là False vì mảng có số không tại chỉ mục 0.

import numpy as np

result = np.all(np.array([-1, 2, 3]))
print(result)

Kết quả:

True

Ví dụ này trả về True vì tất cả các số trong mảng đều khác không.

Bạn cũng có thể truyền một đối tượng giống mảng như một danh sách cho hàm all(). Ví dụ:

import numpy as np

result = np.all([-1, 2, 3])
print(result)

Kết quả:

True

Sử dụng hàm numpy all() với mảng nhiều chiều

Ví dụ sau sử dụng hàm all() để kiểm tra xem tất cả các phần tử của một mảng nhiều chiều có đánh giá là True không:

import numpy as np

a = np.array([[0, 1], [2, 3]])
result = np.all(a, axis=0)
print(result)

Kết quả:

False

Bạn cũng có thể đánh giá các phần tử theo một trục bằng cách truyền tham số axis như sau:

import numpy as np

a = np.array([
    [0, 1],
    [2, 3]
])
result = np.all(a, axis=0)
print(result)

Screenshot 202024 06 06 20222756 png

Kết quả:

[False  True]

Và theo trục -1:

import numpy as np

a = np.array([
    [0, 1],
    [2, 3]
])
result = np.all(a, axis=1)
print(result)

Screenshot 202024 06 06 20222809 png

Kết quả:

[False  True]

Kết bài

Qua hướng dẫn này, mình đã tìm hiểu cách sử dụng hàm numpy all() để kiểm tra xem tất cả các phần tử trong một mảng hoặc theo một trục cụ thể có đánh giá là True hay không. Bằng cách sử dụng hàm này, bạn có thể dễ dàng kiểm tra tính hợp lệ và tính toàn vẹn của dữ liệu, giúp quá trình phân tích và xử lý dữ liệu trở nên hiệu quả hơn. Hãy áp dụng kiến thức này vào công việc thực tế để nâng cao khả năng làm việc với dữ liệu của bạn.

Cùng chuyên mục:

Cách lưu trữ và tải lại Models trong PyTorch

Cách lưu trữ và tải lại Models trong PyTorch

Tìm hiểu về TensorBoard với PyTorch

Tìm hiểu về TensorBoard với PyTorch

Học chuyển giao (Transfer Learning) trong PyTorch Beginner

Học chuyển giao (Transfer Learning) trong PyTorch Beginner

Hướng dẫn cơ bản mạng Nơ-ron Tích Chập (CNN) trong PyTorch

Hướng dẫn cơ bản mạng Nơ-ron Tích Chập (CNN) trong PyTorch

Mạng Nơ-Ron truyền thẳng (Feed Forward Neural Network) trong PyTorch

Mạng Nơ-Ron truyền thẳng (Feed Forward Neural Network) trong PyTorch

Tìm hiểu Activation Functions trong PyTorch

Tìm hiểu Activation Functions trong PyTorch

Softmax và Cross Entropy trong PyTorch Beginner

Softmax và Cross Entropy trong PyTorch Beginner

Dataset Transforms trong PyTorch Beginner

Dataset Transforms trong PyTorch Beginner

Dataset và DataLoader trong PyTorch Beginner

Dataset và DataLoader trong PyTorch Beginner

Hồi quy Logistic trong PyTorch Beginner

Hồi quy Logistic trong PyTorch Beginner

Hồi quy tuyến tính trong PyTorch Beginner

Hồi quy tuyến tính trong PyTorch Beginner

Training Pipeline trong PyTorch Beginner

Training Pipeline trong PyTorch Beginner

Sử dụng Gradient Descent với Autograd trong PyTorch

Sử dụng Gradient Descent với Autograd trong PyTorch

Hướng dẫn về Tensor cơ bản trong PyTorch

Hướng dẫn về Tensor cơ bản trong PyTorch

Hướng dẫn cài đặt PyTorch với Deep Learning

Hướng dẫn cài đặt PyTorch với Deep Learning

LDA (Linear Discriminant Analysis) trong Python

LDA (Linear Discriminant Analysis) trong Python

Thuật toán AdaBoost trong Python

Thuật toán AdaBoost trong Python

Thuật toán K-Means Clustering trong Python

Thuật toán K-Means Clustering trong Python

Triển khai PCA bằng Python

Triển khai PCA bằng Python

Triển khai thuật toán Random Forest bằng Python

Triển khai thuật toán Random Forest bằng Python

Top