NUMPY
CÁC CHỦ ĐỀ
BÀI MỚI NHẤT
MỚI CẬP NHẬT

Thông báo: Download 4 khóa học Python từ cơ bản đến nâng cao tại đây.

Cách sử dụng hàm all() trong NumPy

Trong bài viết này, bạn sẽ học cách sử dụng hàm numpy all() để kiểm tra xem tất cả các phần tử trong một mảng có đánh giá là True hay không. Hàm numpy all() là một công cụ hữu ích trong việc xử lý và phân tích dữ liệu, giúp bạn dễ dàng xác định tính hợp lệ của toàn bộ tập hợp dữ liệu. Chúng ta sẽ đi qua các ví dụ cụ thể để hiểu cách hàm này hoạt động và cách áp dụng nó vào các tình huống thực tế.

test php

banquyen png
Bài viết này được đăng tại freetuts.net, không được copy dưới mọi hình thức.

Giới thiệu về hàm all() trong Numpy

Hàm numpy all() trả về True nếu tất cả các phần tử trong một mảng (hoặc theo một trục cụ thể) đều đánh giá là True.

Dưới đây là cú pháp của hàm all():

numpy.all(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)

Trong cú pháp này, a là một mảng NumPy hoặc một đối tượng giống mảng như một danh sách.

Bài viết này được đăng tại [free tuts .net]

Nếu mảng đầu vào chứa tất cả các số, hàm all() trả về True nếu tất cả các số đều khác không hoặc False nếu ít nhất một số là không. Lý do là tất cả các số khác không đều đánh giá là True trong khi số không đánh giá là False.

Ví dụ về hàm all() trong Numpy

Hãy xem một số ví dụ về cách sử dụng hàm all().

Sử dụng hàm numpy all() với mảng 1-D

Ví dụ sau sử dụng hàm all() để kiểm tra xem tất cả các số trong một mảng có khác không không:

import numpy as np

result = np.all([0, 1, 2, 3])
print(result)

Kết quả:

False

Kết quả là False vì mảng có số không tại chỉ mục 0.

import numpy as np

result = np.all(np.array([-1, 2, 3]))
print(result)

Kết quả:

True

Ví dụ này trả về True vì tất cả các số trong mảng đều khác không.

Bạn cũng có thể truyền một đối tượng giống mảng như một danh sách cho hàm all(). Ví dụ:

import numpy as np

result = np.all([-1, 2, 3])
print(result)

Kết quả:

True

Sử dụng hàm numpy all() với mảng nhiều chiều

Ví dụ sau sử dụng hàm all() để kiểm tra xem tất cả các phần tử của một mảng nhiều chiều có đánh giá là True không:

import numpy as np

a = np.array([[0, 1], [2, 3]])
result = np.all(a, axis=0)
print(result)

Kết quả:

False

Bạn cũng có thể đánh giá các phần tử theo một trục bằng cách truyền tham số axis như sau:

import numpy as np

a = np.array([
    [0, 1],
    [2, 3]
])
result = np.all(a, axis=0)
print(result)

Screenshot 202024 06 06 20222756 png

Kết quả:

[False  True]

Và theo trục -1:

import numpy as np

a = np.array([
    [0, 1],
    [2, 3]
])
result = np.all(a, axis=1)
print(result)

Screenshot 202024 06 06 20222809 png

Kết quả:

[False  True]

Kết bài

Qua hướng dẫn này, mình đã tìm hiểu cách sử dụng hàm numpy all() để kiểm tra xem tất cả các phần tử trong một mảng hoặc theo một trục cụ thể có đánh giá là True hay không. Bằng cách sử dụng hàm này, bạn có thể dễ dàng kiểm tra tính hợp lệ và tính toàn vẹn của dữ liệu, giúp quá trình phân tích và xử lý dữ liệu trở nên hiệu quả hơn. Hãy áp dụng kiến thức này vào công việc thực tế để nâng cao khả năng làm việc với dữ liệu của bạn.

Cùng chuyên mục:

Tìm hiểu Backreferences trong regex của Python

Tìm hiểu Backreferences trong regex của Python

Nhóm Non-capturing trong Regex Python

Nhóm Non-capturing trong Regex Python

Các nhóm Capturing trong regex của Python

Các nhóm Capturing trong regex của Python

Sets và Ranges trong Regex của Python

Sets và Ranges trong Regex của Python

Lượng từ non-greed trong Regex của Python

Lượng từ non-greed trong Regex của Python

Chế độ Greedy trong Regex Python

Chế độ Greedy trong Regex Python

Các lượng từ trong Regex của Python

Các lượng từ trong Regex của Python

Regex Word Boundary trong Python

Regex Word Boundary trong Python

Regex với các ký tự neo trong Python

Regex với các ký tự neo trong Python

Các tập ký tự trong Regex của Python

Các tập ký tự trong Regex của Python

Biểu thức chính quy (Regex) trong Python

Biểu thức chính quy (Regex) trong Python

Tìm hiểu Context Managers trong Python

Tìm hiểu Context Managers trong Python

Biểu thức Generator trong Python

Biểu thức Generator trong Python

Tìm hiểu Generators trong Python

Tìm hiểu Generators trong Python

Sử dụng hiệu quả hàm iter() trong Python

Sử dụng hiệu quả hàm iter() trong Python

Iterator vs Iterable trong Python

Iterator vs Iterable trong Python

Tìm hiểu về Iterator trong Python

Tìm hiểu về Iterator trong Python

Dãy số Fibonacci trong Python

Dãy số Fibonacci trong Python

Cắt Chuỗi (Slicing) trong Python

Cắt Chuỗi (Slicing) trong Python

Sự khác biệt giữa Tuple và List trong Python

Sự khác biệt giữa Tuple và List trong Python

Top