Đại lượng tỉ lệ thuận và các dạng toán thường gặp
Bài này sẽ định nghĩa khái niệm đại lượng tỉ lệ thuận là gì? Các dạng toán thường gặp và phương pháp giải các dạng bài tập đó.
Tỉ lệ thuận là kiến thức phổ thông, nó giúp ta biết được một giá trị A có tỉ lệ thuận với giá trị B hay không, và giá trị tỉ lệ là bao nhiêu.
I. Định nghĩa về đại lượng tỉ lệ thuận
Ví dụ 1: Một chiếc xe máy đi từ nhà lên thành phố thì mất 1 giờ (t) với vận tốc đều của chiếc xe là 30km/ giờ (v). Quãng đường (s) từ nhà lên phố là bao nhiêu?
Bài giải:
Bài viết này được đăng tại [free tuts .net]
Quãng đường từ nhà lên phố là:
(! s=v \times t= 30 \times 1= 30 km !)
Ví dụ 2: Khối lượng m (kg) theo thể tích V (m3) của thanh kim loại đồng chất có khối lượng riêng D (Kg/ m3) ( D là một hằng số # 0 )
Bài giải:
(! m= D \times V !)
Nhìn vào hai ví dụ trên ta thấy đều có điểm giống nhau đó là: Đại lượng này bằng đại lượng kia nhân một hằng số khác 0.
Vậy chúng ta có định nghĩa về đại lượng tỉ lệ thuận như sau:
Nếu đại lượng y liên hệ với đại lượng x theo công thức y=kx ( với k là một hằng số khác 0 ) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k.
Ví dụ 3: Cho biết y tỉ lệ thuận với x theo hệ số tỉ lệ (! - \frac{3}{5} !). Hỏi x tỉ lệ thuận với y theo hệ số tỉ lệ nào?
Bài giải:
Vì y tỉ lệ thuận với x theo hệ số tỉ lệ (! - \frac{3}{5} !) nên:
(! y = - \frac{3}{5}x \Rightarrow x = y \div \frac{-3}{5} \Rightarrow x = \frac{-5}{3}y !)
Vậy x tỉ lệ thuận với y theo tỉ lệ (! - \frac{5}{3} !)
Chú ý: Khi đại lượng y tỉ lệ thuận với đại lượng x thì x cũng tỉ lệ thuận với y và ta nói hai đại lượng đó tỉ lệ thuận với nhau. Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k ( khác 0) thì x tỉ lệ thuận với y theo hệ số tỉ lệ 1k.
II. Tính chất đại lượng tỉ lệ thuận
Đối với hai đại lượng tỉ lệ thuận với nhau chúng có tính chất sau:
- Tỉ số hai giá trị tương ứng của chúng luôn luôn không đổi
- Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia
Ví dụ: Cho bảng dữ liệu sau.
x | x1=3 | x2=4 | x3=5 | x4=6 |
y | y1=6 | y2=? | y3=? | y4=? |
a) Xác định tỉ lệ y với x
b) Thay vào mỗi dấu ? là một số thích hợp
Bài giải:
a) Vì x và y là hai đại lượng tỉ lệ thuận với nhau nên
(! y1 = k.x1 \Rightarrow k = \frac{y1}{x1} = \frac{6}{3} = 2 !)
Vậy tỉ lệ của y với x = 2.
b) Vì tỉ lệ của y với x = 2 nên ta có bảng số thích hợp sau:
x | x1=3
|
x2=4
|
x3=5
|
x4=6
|
y
|
y2=6
|
y2=8
|
y3=10
|
y4=12
|
III. Các dạng toán về đại lượng tỉ lệ thuận
Dạng 1: Nhận biết hai đại lượng là tỉ lệ thuận
Phương pháp để thực hiện dạng toán này đó chính là phải dựa vào bảng giá trị để nhận biết chúng có tỉ lệ thuận với nhau hay không ta tính tỉ số (! \frac{y}{x} !), nếu cho cùng một kết quả thì chúng tỉ lệ thuận với nhau.
Ví dụ: Cho bảng sau và cho biết x, y có tỉ lệ thuận với nhau hay không?
x | x1= -2 | x2=8 | x3=10 |
y | y1= -4 | y2=16 | y3=20 |
Bằng cách lập tỉ lệ chúng ta có
(! \frac{x1}{y1} = \frac{-2}{-4} = \frac{1}{2}; \frac{x2}{y2} = \frac{8}{16} = \frac{1}{2}; \frac{x3}{y3} = \frac{10}{20} = \frac{1}{2} !)
Vậy:
(! \frac{x1}{y1} = \frac{x2}{y2} = \frac{x3}{y3} = \frac{1}{2} !)
Vậy x và y tỉ lệ thuận với nhau.
Dạng 2: Tính hệ số tỉ lệ, biểu diễn x theo y, tìm x khi biết y và ngược lại
Đối với dạng toán này, chúng ta sử dụng các phương pháp sau:
Để biết được mối quan hệ giữa x và y ta có k=yx, sau khi tìm được k, ta thay vào biểu thức y=k.x, và ngược lại.
Ví dụ: Cho x và y là hai đại lượng tỉ lệ thuận. x=4 và y=8
a) Tìm hệ số tỉ lệ y với x
b) Hãy biểu diễn y theo x
c) Tính x khi y=32
Bài giải:
a) Hệ số tỉ lệ y với x là (! k = \frac{y}{x} = \frac{6}{3} = 2 !)
b) Vì k= 2 nên y= 2x
c) Với (! y = 32 \Rightarrow 32 = 2x \Rightarrow x = 32 \div 2 = 16 !)
Dạng 3: Hoàn thành bảng số liệu khi cho y và x là hai đại lượng tỉ lệ thuận
Đối với dạng toán này chúng ta áp dụng phương pháp sau:
- Tính k và biểu diễn x theo y hoặc ngược lại
- Thay các giá trị tương ứng
Ví dụ: Cho biết x và y là hai đại lượng tỉ lệ thuận. Điền số thích hợp và chỗ trống sau:
x | 3 | 5 | 7 | 9 |
y | 15 |
Vì x và y là tỉ lệ thuận nên: (! y= k \times x !)
Dựa theo bảng số liệu đã cho khi x=5 và y=15, ta có (! k = \frac{y}{x} = \frac{15}{5} = 3 !)
Vì y và x tỉ lệ thuận với nhau và có tỉ lệ là 3 nên ta có bảng sau:
x | 3 | 5 | 7 | 9 |
y | 9 | 15 | 21 | 27 |
Dạng 4: Cho x tỉ lệ thuận với y, y tỉ lệ thuận với z, tính hệ số tỉ lệ và mối quan hệ giữa x và z.
Đối với dạng toán này chúng ta biểu diễn x theo y, y theo z, rồi thay y vào biểu thức để tìm mối quan hệ giữa x và z.
Ví dụ: Cho x và y tỉ lệ thuận với nhau với tỉ số k= 5, y tỉ lệ thuận với z có tỉ số là k= 7. x có tỉ lệ thuận với z không? Tỉ số của chúng bằng bao nhiêu?
Bài giải:
Theo đề bài, ta có:
- x tỉ lệ thuận với y, k=5x = 5y (1)
- y tỉ lệ thuận với z, k=7 y= 7z (2)
Thay thế y ở phương trình (2) vào phương trình (1)
Ta có: x= 5y =5.(7z)=35z
Vậy x tỉ lệ thuận với z
Tỉ số k= 35
Dạng 5: Toán đố về đại lượng tỉ lệ thuận
Chúng ta sẽ dùng phương pháp sau để thực hiện
- Ta lập tỉ số đối với bài toán có hai đại lượng
- Ta gọi các giá trị cần tìm rồi đưa về dãy tỉ số bằng nhau để giải nếu bài toán chia số phần.
Ví dụ: Thay cho việc đo chiều dài các cuộn dây thép thì người ta thường cân chúng. Cho biết mỗi mét dây nặng 25 gam. Giả sử x mét dây nặng y gam, hãy biểu diễn y theo x.
Bài giải:
Vì chiều dài của cuộn dây thép tỉ lệ thuận với chiều dài của cuộn dây nên y=k.x.
Theo đề bài ta có cứ 1 mét dây thì sẽ nặng 25 gam. Thay vào công thức, ta được:
(! 25=k.1 \Rightarrow k=25 !)
Vậy (! y = 25x !)
Bài viết trên mình đã thống kê và tập hợp các kiến thức cơ bản về tỉ lệ thuận và các dạng toán liên quan. Bài viết sẽ giúp các bạn cũng cố cũng như bổ sung phần kiến thức cơ bản này. Chúc các bạn học tốt.