LÝ THUYẾT HÌNH HỌC
CÁC CHỦ ĐỀ
BÀI MỚI NHẤT
MỚI CẬP NHẬT

Cách tính diện tích và thể tích hình lăng trụ đứng

Bài này sẽ tổng hợp kiến thức về hình lăng trụ đứng như: Khái niệm, các loại hình lăn trụ đứng, cách tính diện tích và thể tích.

test php

banquyen png
Bài viết này được đăng tại freetuts.net, không được copy dưới mọi hình thức.

Hình lăng trụ là một trong những loại hình học không gian được đưa vào chương trình giảng dạy toán phổ thông nói chung và toán lớp 8 nói riêng. Khi học nội dung này thì học sinh phải nắm vững các tính chất và công thức để vận dụng vào việc giải bài tập.

1. Hình lăng trụ đứng là gì?

Hình lăng trụ đứng chính là các khối hình học có cạnh bên vuông góc với mặt đáy.

hinh lan tru dung 1 png

Hình vẽ trên đây là một ví dụ cho hình lăng trụ đứng. Nhìn vào hình vẽ chúng ta thấy hình lăng trụ trên có:

Bài viết này được đăng tại [free tuts .net]

  • Có 8 đỉnh A,B,C,D,A’,B’,C’,D’ (số đỉnh tùy thuộc vào từng loại hình)
  • Có các mặt bên đều là hình chữ nhật đó là AA’D’D, DCD’C’, BCB’C’, ABB’A’
  • Có các đoạn thẳng song song với nhau và bằng nhau, chúng được gọi là các cạnh bên: AA’, BB’, CC’, DD’

Từ đây ta thấy hình hộp chữ nhật là một trường hợp đặc biệt của hình lăng trụ đứng, bởi nó có 8 đỉnh, các mặt bên đều là hình chữ nhật.

2. Tính chất của hình lăng trụ đứng

  • Hai đáy của hình lăng trụ chính là hai đa giác bằng nhau và nằm trên hai mặt phẳng song song.
  • Hình lăng trụ có các mặt bên vuông góc với mặt phẳng đáy và chúng đều là hình chữ nhật.
  • Các cạnh bên của hình lăng trụ song song và bằng nhau, chúng vuông góc với mặt phẳng đáy và đó cũng chính là chiều cao của hình lăng trụ.

3. Hình lăng trụ đứng có những loại nào?

* Lăng trụ đứng tam giác: là hình lăng trụ có mặt phẳng đáy là hình tam giác

hinh lang tru dung 2 png

* Lăng trụ đứng tứ giác: là hình lăng trụ có đáy là một hình tứ giác

hinh lang tru dung 3 png

* Lăng trụ đứng ngũ giác: là hình trụ mà mặt phẳng đáy của nó có hình ngũ giác

hinh lang tru dung 4 png

* Hình hộp đứng: là hình trụ mà mặt phẳng đáy của nó chính là một hình bình hành

hinh lang tru dung 5 png

* Ngoài ra hình hộp chữ nhật hay hình lập phương cũng chính là những loại hình của lăng trụ đứng

4. Cách tính diện tích của hình lăng trụ đứng

Chúng ta cũng có hai phần như bài học trước, thứ nhất là diện tích xung quanh và thứ hai là diện tích toàn phần.

Cách tính diện tích xung quanh của lăng trụ đứng

Diện tích xung quanh của hình lăng trụ đứng chính là tổng diện tích của tất cả các mặt bên của một hình lăng trụ.

Để tính được diện tích xung quanh của hình lăng trụ đứng chúng ta lấy chu vi đáy nhân với chiêu cao.

Công thức tổng quát:

(!! Sxq = P \times h !!)

Trong đó:

  • Sxq là diện tích xung quanh
  • P là chu vi đáy, tùy thuộc vào mỗi hình mà có cách tính chu vi khác nhau.
  • h là chiều cao của lăng trụ đứng

cong thuc tinh dien tich xung quanh toan phan hinh lang jpg

Ví dụ: Cho một lăng trụ đứng tam giác có độ dài các cạnh đáy lần lượt là 5cm,6cm và 5cm. Tính diện tích xung quanh của lăng trụ đó biết chiều cao của lăng trụ đó là 7cm?

Bài giải:

Vì là hình lăng trụ hình tam giác nên để tính chu vi đáy thì ta sẽ áp dụng công thức tính chu vi hình tam giác.

Chu vi mặt đáy của lăng trụ đó là:

(!! P = 5+6+5=16(cm) !!)

Vậy, diện tích xung quanh của lăng trụ đó là:

(!! Sxq = 16 \times 7= 112(cm^2) !!)

Đáp số: 112 cm2

Cách tính diện tích toàn phần của lăng trụ đứng

Diện tích toàn phần của hình lăng trụ đứng chính là bằng tổng diện tích của các mặt bên hình lăng trụ và hai mặt đáy của hình lăng trụ đó. Hay nói cách khác, diện tích toàn phần của hình lăng trụ là tổng diện tích xung quanh và diện tích hai mặt đáy.

Chúng ta có công thức tổng quát sau:

(!! Stp= Sxq + 2Sđáy !!)

Trong đó:

  • Stp là diện tích toàn phần
  • Sxq là diện tích xung quanh
  • Sđáy là diện tích đáy, tùy thuộc vào mỗi hình mà có công thức tính khác nhau.

dien tich toan phan hinh lang tru dung jpg

Ví dụ: Cho một hình lăng trụ đứng tứ giác, có mặt đáy của hình là một hình thang. Mặt đáy có chiều dài hai đáy lần lượt là 10cm, 13cm, và chiều dài hai cạnh bên là 8cm và 11cm, chiều cao của hình thang mặt đáy là 7cm. Hãy tính diện tích toàn phần của lăng trụ đó, biết chiều cao hình lăng trụ là 6cm?

Bài giải:

Ta sẽ áp dụng công thức tính chu vi hình thang để tính chu vi mặt đáy của hình lăng trụ tứ giác này.

Chu vi của mặt đáy hình thang là:

(!! P = 10+13+8+11= 42(cm) !!)

Diện tích mặt đáy của lặng trụ đó là:

(!! Sđáy = \frac{(13+10) \times 7}{2}=80,5 (cm^2) !!)

Diện tích xung quanh của hình lăng trụ đó là:

(!! Sxq = 42 \times 6= 252 (cm^2) !!)

Diện tích toàn phần của hình lăng trụ đó là:

(!! Stp = 252 + (2 \times 80,5)= 413 (cm^2) !!)

Đáp số: 413cm2

5. Cách tính thể tích của lăng trụ đứng

 cUvM8r1TnNHfWbj4i9fCPzLNG8x6kI2SHGq q N0KwqyYir3A8 kJbcrYlGbUS3wPx5guhaWTCgl3sS36co2tsI878qT3 bjp83jx7HvAkQ7kxlm bGpQI b1jMQXifNA

Thể tích của một hình lăng trụ đứng chính là phần không gian mà hình đó chiếm phải. Chúng ta tính thể tích của một hình lăng trụ bằng cách lấy diện tích đáy nhân với chiều cao.

Công thức chung:

(!! V = S \times h !!)

Trong đó:

  • V là thể tích
  • S là diện tích đáy
  • h là chiều cao

Ví dụ: Cho một hình lăng trụ tam giác có diện tích đáy là 32cm2 và chiều cao của hình lăng trụ là 5cm. Tính thể tích của hình lăng trụ đứng đó?

Bài giải:

Thể tích của hình lăng trụ đó là:

(!! S = 32 \times 5 = 160(cm^2) !!)

Đáp số: 160 cm2

Trên đây là bài viết tổng quát về hình lăng trụ, các loại hình lăng trụ đứng và các công thức liên quan kèm theo ví dụ. Hi vọng bài viết sẽ giúp các bạn hiểu rõ hơn về lăng trụ đứng để áp dụng nó vào việc giải bài tập một cách phù hợp nhất. Chúc các bạn học giỏi.

Cùng chuyên mục:

Cách tính phần trăm đơn giản áp dụng cho mọi bài toán tính tỉ lệ

Cách tính phần trăm đơn giản áp dụng cho mọi bài toán tính tỉ lệ

Bảng nguyên tử khối hóa học chuẩn và đầy đủ nhất

Bảng nguyên tử khối hóa học chuẩn và đầy đủ nhất

Đại lượng tỉ lệ thuận và các dạng toán thường gặp

Đại lượng tỉ lệ thuận và các dạng toán thường gặp

Số thực là gì? Cách biểu diễn trục số thực trong toán học

Số thực là gì? Cách biểu diễn trục số thực trong toán học

Trong bài viết này, mình và các bạn sẽ cùng nhau tìm hiểu ...

Số hữu tỉ là gì? Các phép toán trên số hữu tỉ thường gặp

Số hữu tỉ là gì? Các phép toán trên số hữu tỉ thường gặp

Các em đã được biết đến khái niệm số tự nhiên, số nguyên ...

Công thức tính diện tích và thể tích hình nón và hình nón cụt

Công thức tính diện tích và thể tích hình nón và hình nón cụt

Hình nón là một dạng hình học tương đối khó đối với học sinh trung…

Công thức tính diện tích và thể tích hình trụ (diện tích xung quanh và toàn phần)

Công thức tính diện tích và thể tích hình trụ (diện tích xung quanh và toàn phần)

Hình trụ là hình được sử dụng khá nhiều trong chương trình hình học phổ…

Cách tính diện tích và thể tích hình cầu

Cách tính diện tích và thể tích hình cầu

Trong cuộc sống, chắc hẳn các bạn đã gặp rất nhiều về hình ...

Các loại hình học phẳng và hình học không gian thường gặp

Các loại hình học phẳng và hình học không gian thường gặp

Hình học là bộ môn có thể nói là rất khó, nhưng nó được áp…

Công thức tính diện tích và thể tích của hình lập phương

Công thức tính diện tích và thể tích của hình lập phương

Cách tính diện tích và thể tích hình chóp đều

Cách tính diện tích và thể tích hình chóp đều

Hình chóp là một loại hình học không gian khá phức tạp, không phù hợp…

Hình hộp chữ nhật: Cách tính chu vi - tính diện tích - tính thể tích

Hình hộp chữ nhật: Cách tính chu vi - tính diện tích - tính thể tích

Đến với hình học không gian thì hình hộp chữ nhật là một dạng hình…

Hai tam giác động dạng là gì? Các trường hợp đồng dạng của tam giác

Hai tam giác động dạng là gì? Các trường hợp đồng dạng của tam giác

Như các bạn đã biết, tam giác là là hình được tạo ra bởi ba…

Định lý Talet và các hệ quả  trong tam giác (định lý talet đảo)

Định lý Talet và các hệ quả trong tam giác (định lý talet đảo)

Xin chào các bạn học sinh thân mến, các bạn đã biết gì về định…

Hai dạng bài tập thường gặp về hình bình hành

Hai dạng bài tập thường gặp về hình bình hành

Đối với dạng toán này chúng ta cần vận dụng các tính chất của hình…

Cách tính chu vi hình bình hành và ví dụ thực hành

Cách tính chu vi hình bình hành và ví dụ thực hành

Để tiếp nối cho bài học hôm trước, bài viết này mình sẽ giúp ..

Cách tính diện tích hình bình hành và ví dụ minh họa

Cách tính diện tích hình bình hành và ví dụ minh họa

Xin chào tất cả các em, hôm nay chúng ta lại gặp nhau ..

Cách chứng minh hình bình hành đơn giản nhất

Cách chứng minh hình bình hành đơn giản nhất

Hình học là một đề tài rộng lớn, chúng ta bắt gặp hình học xung…

Cách tính chu vi hình thoi và bài tập thực hành

Cách tính chu vi hình thoi và bài tập thực hành

Các bạn còn nhớ công thức tính chu vi hình thoi chứ? Muốn tính được…

Cách tính chu vi hình vuông và bài tập thực hành

Cách tính chu vi hình vuông và bài tập thực hành

Bài viết này sẽ hướng dẫn cách ..

Top