LÝ THUYẾT ĐẠI SỐ
Tập hợp, phần tử của tập hợp Cách tìm ước và bội của số nguyên (ước chung và bội chung) Số hoàn hảo là gì? Nó có phải là số hoàn thiện? Số chính phương Cách giải phương trình bậc nhất một ẩn (ax + b = 0) Cách giải phương trình bậc nhất hai ẩn ax + by = 0 Cách giải phương trình bậc hai một ẩn ax^2 + bx + c = 0 Bảng cửu chương cộng trừ nhân chia và các mẹo ghi nhớ Cách tính giá trị tuyệt đối của một số (số thực, số hưu tỉ) Bảng đổi đơn vị đo độ dài và cách quy đổi cực chính xác 1dm bằng bao nhiêu cm 1 ha bằng bao nhiêu m2? Quy đổi ha sang km2, sào, mẫu, công đất Tiệm cận ngang Tiệm cận đứng của đồ thị hàm số Công thức đạo hàm Tính bằng cách thuận tiện nhất Cách tính phần trăm đơn giản áp dụng cho mọi bài toán tính tỉ lệ Số hữu tỉ là gì? Số thực là gì? Cách biểu diễn trục số thực trong toán học Danh sách 7 hằng đẳng thức đáng nhớ (Ghi lại kẻo quên) Cách tìm tập xác định hàm số mũ Cách tìm tập nghiệm của bất phương trình Kiến thức 3 đường conic (Elip, Hypebol, Parabol) và các dạng bài tập Định lý cosin, các hệ quả quan trọng và bài tập áp dụng Công thức logarit lớp 12 cơ bản - nâng cao kèm bài tập Đại lượng tỉ lệ thuận Tổng hợp công thức lượng giác Tích vô hướng, tích có hướng Số phức là gì? Tính chất, cách tính và tổng hợp bài tập Cách Rút gọn biểu thức Đề thi Toán lớp 4 học kì 2 Bất đẳng thức Cosi: Công thức, hệ quả và các bài tập Đề thi toán lớp 2 học kì 2 Cách tính delta, delta phẩy và một số bài tập áp dụng Bảng nguyên tử khối hóa học chuẩn và đầy đủ nhất Tập hợp Số tự nhiên Hệ thập phân Tập hợp con Dấu hiệu chia hết cho 2 Dấu hiệu chia hết cho 3
CÁC CHỦ ĐỀ
BÀI MỚI NHẤT
MỚI CẬP NHẬT

Số phức là gì? Tính chất, cách tính và tổng hợp bài tập

Lý thuyết về số phức và các khái niệm liên quan cùng các tính chất quan trọng và các dạng bài tập cơ bản thường gặp, mời các em theo dõi tại đây.

test php

banquyen png
Bài viết này được đăng tại freetuts.net, không được copy dưới mọi hình thức.

Số phức là một kiến thức quan trọng trong chương trình toán lớp 12 và thường xuyên xuất hiện trong các bài thi THPT Quốc gia, chính vì thế các em cần phải nắm vững lý thuyết và các dạng bài tập liên quan. Ngay trong bài viết này, freetuts đã tổng hợp đầy đủ các kiến thức liên quan đến số phức, mời các em cùng xem và tham khảo nhé.

Số phức và các khái niệm liên quan trong toán học

Cùng tìm hiểu lý thuyết số phức và các khái niệm khác liên quan ngay bên dưới đây nhé.

Khái niệm số phức trong toán học

Trong toán học, số phức là số được viết dưới dạng a + bi.

Bài viết này được đăng tại [free tuts .net]

Với:

  • a, b là số thực.
  • i là một đơn vị ảo, thỏa điều kiện i^2 = -1
  • a là phần thực, b là phần ảo của số phức.

Ngoài ra, số phức có thể được biểu diễn trên mặt phẳng phức với trục hoành Oy là trục số thực, trục tung Ox là trục số ảo. Và trong trường hợp này, a + bi được xác định dựa vào điểm A(a,b).

Cho 2 số phức z = a + bi và z’ = a’ + b’i, điều kiện z = z’ a = a’ và b = b’.

Mặt phẳng phức

so phuc 1 jpg

Cho hệ tọa độ Descartes, trục hoành đại diện tọa độ phần thực, trục tung sẽ đại diện cho tọa độ phần ảo, lúc này số phức được biểu diễn dưới dạng:

z = x + i.y

Lúc này, mặt phẳng tọa độ này sẽ được gọi là mặt phẳng phức.

Số phức liên hợp

Cho số phức dưới dạng Z = a + bi, Z ‘ = a - bi được gọi là số phức liên hợp của Z và có tính chất như sau:

Z x Z’ = a^2 + b^2 là một số thực.

Z + Z’ = 2a là một số thực

so phuc 2 jpg

Số phức nghịch đảo

Số phức nghịch đảo hay là nghịch đảo của số phức Z có ký hiệu là Z-1 là số phức có dạng sao cho tích của nó với Z bằng 1.

Số phức nghịch đảo của Z = a + bi là Z-1=1Z=1a+bi=Z|Z2|

Số phức thuần ảo

Một số phức được gọi là thuần ảo khi phần số thực a = 0, suy ra Z = bi thuộc R.

Số phức đối

Theo cách hiểu đơn giản nhất, số phức đối là sự chuyển đổi âm thành dương và ngược lại dương thành âm của một số phức bất kỳ.

Ví dụ: Cho z = a + bi, thì số phức đối của z là -z = -a - bi, và z + (-z) = (-z) + z = 0

Modun số phức

Cho Z = a + bi, ta có Z x Z = a2+b2, và lúc này, căn bậc hai của Z x Z được gọi là module của số phức Z, ký hiệu là |Z|.

|Z2|=a2+b2.

Ta có tính chất của modun như sau:

so phuc 3 jpg

Argument số phức

Trên mặt phẳng tọa độ bằng điểm M(a, b), góc tạo giữa chiều dương của trục Ox và OM được gọi là argument của số phức Z, có ký hiệu là arg(z).

Ta có tính chất của argument như sau:

so phuc 4 jpg

Dạng đại số và dạng lượng giác của số phức

Số phức đại số

Trong trường số phức, đơn vị ảo i sẽ có tính chất như sau:

i2 =-1 i = -1

Và Z = a + bi, với a, b là các số thực được gọi là dạng lượng giác của Z.

Số phức lượng giác

Ngoài dạng đại số, Z = a + bi có thể viết dưới dạng sau:

so phuc 5 jpg

Đặt r = |z|, = arg(z), ta có:

z = r (cos + i.sin), đây được gọi là dạng lượng giác của số phức z.

Trong đó:

  • r là số thực.
  • là góc.
  • r.cos = a là phần thực.
  • rsin = b là phần ảo.

Gọi Z(r.cos; rsin), góc tạo bởi OZ và Ox là:

arctan(Zy/Zx) = arctan(rsin/r.cos) = arctan(tan) =

Ví dụ minh họa:

Cho z1 = 2 + 2i, vậy dạng lượng giác của z1 là:

r = 22+22=22.

= arctan(2/2) = /4

Thế vào phương trình ta có:

z1 = 22 (cos/4 +i.sin(/4))

Các phép toán về số phức trong toán học

Trong số phức, cũng có các phép toán cộng, trừ, nhân chia thông thường như số tự nhiên.

Cộng trừ hai số phức

Cho 2 số phức z1 = a1 + b1.i và z2 = a2 + b2.i, ta có:

w = z1 + z2 = (a1 + a2) +(b1 + b2)i

u = z1 - z2 = (a1 - a2) +(b1 - b2)i

Và trong phép cộng hai số phức cũng có đầy đủ các tính chất như phép cộng giữa hai số thực bao gồm:

Tính chất giao hoán: z1 + z2 = z2 + z1, với mọi z1, z2 thuộc C.

Tính chất kết hợp: (z1 + z2) + z3 = z1 + (z2 + z3), với mọi z1, z2 thuộc C.

Ví dụ minh họa:

Cho z = 3 + 6i, z’ = -2 + 3i, tính z + z’ =?

Lời giải:

Ta có z + z’ = (3 + 6i) + (-2 + 3i) = 3 - 2 + (6 + 3)i = 1 + 9u=i.

Nhân hai số phức

Cho 2 số phức z1 = a1 + b1.i và z2 = a2 + b2.i, ta có:

w = z1.z2 = a1.a2 - b1.b2 + (a1b2 + a2b1)i

Cho số thực k, ta có k(a + bi) = (k + 0i)(a + bi) = ka + kbi.

Phép nhân các số phức cũng có đầy đủ tính chất như phép nhân giữa các số thực, với mọi z1, z2, z3 thuộc C, ta có:

Tính chất giao hoán: z1.z2 = z2.z1

Nhân với 1: 1.z = z.1 = z.

Tính chất kết hợp: (z1z2)z3 = z1(z2.z3)

Tính chất phân phối: z1(z2 + z3) = z1z2 + z1z3.

Ví dụ minh họa:

Phân tích ra thừa số của hàm sau: a^2 + 1

Lời giải:

a^2 + 1 = a^2 - i^2 = (a - i)(a + i)

Phép chia số phức khác 0

so phuc 6 jpg

Ví dụ minh họa:

Thực hiện phép chia số phức sau: z = (-5 + 6i)/(4 + 3i)

Lời giải:

z = (-5 + 6i)/(4 + 3i) = ((-5 + 6i)(4 - 3i))/((4 + 3i).(4 - 3i) = (-2 + 39i).(4^2 + 3^2) = -2/25 + (39/25)i

Khai căn bậc 2 của số phức

Cho z = x + yi là căn bậc 2 của số phức w = a + bi

z2=w x2 - y2 = a, 2xy = b.

  • Nếu w = 0, có duy nhất một giá trị căn bậc 2 là z = 0.
  • Nếu w khác 0, có 2 giá trị căn bậc 2 đối nhau.

Tính chất của số phức trong toán học

Sau đây là một số tính chất quan trọng của số phức mà freetuts đã tổng hợp được, mời các em cùng tham khảo nha.

z là số thực z = z

z là số ảo z =- z

z. z = |z|^2

z1+z2= z1 +z2

z1.z2= z1 x z2

z1z2=z1 z2

|z1.z2| = |z1|.|z2|

|z1 + z2| |z1|+|z2|

Cho hai số phức z, z’ được biểu diễn dưới dạng lượng giác như sau:

z = r.(cos + i.sin)

z’ = r’.(cos' + i.sin')

Lúc này, ta có tính chất sau:

z.z’ = r.r’(cos+')+isin(+'))

z/z’ = r/r’(cos-')+isin(-'))

zn=rn(cos.n + isin.n)

Ứng dụng của số phức

Số phức có rất nhiều ứng dụng trong toán học, vật lý như:

  • Ứng dụng trong hình học phẳng.
  • Phân tích đa thức ra thừa số.
  • Tính toán các phép tính tích phân.
  • Dùng để mô tả dòng điện xoay chiều.

Dạng bài tập liên quan đến số phức

Sau đây là một số dạng bài tập cơ bản thường gặp liên quan đến số phức, các em hãy cùng theo dõi để có thể nắm vững được cách làm nha.

Dạng 1: Điểm biểu diễn của số phức bất kỳ

Đây là một dạng toán cơ bản nhất, để có thể hoàn thành tốt dạng bài tập này, các em cần nắm vững kiến thức sau:

Cho z = a + bi (a,b thuộc R), thì điểm biểu diễn M của z có tọa độ là (a,b) và ngược lại.

Ví dụ minh họa:

z = (3 + 5i ) + (-8 + 6i), tìm điểm biểu diễn z trên mặt phẳng tọa độ.

Lời giải:

Ta có : z = (3 + 5i ) + (-8 + 6i) = 3 - 8 + 5i + 6i = -6 + 11i, vậy điểm biểu diễn của z có tọa độ là M(-6, 11).

Dạng 2: Tìm số phức thỏa mãn điều kiện T cho trước

Để có thể làm tốt bài tập ở dạng này, các em chỉ cần dựa vào điều kiện đã cho ở để bài để giải phương trình tìm ra được phần thực và phần ảo, từ đó suy ra số phức cần tìm.

Ví dụ minh họa:

Cho đẳng thức: 5x + y + 5xi = 2y - 1 + (x - y)i, tìm x, y để đẳng thức đã cho là đúng.

Lời giải:

Ta coi 5x + y + 5xi và 2y - 1 + (x - y)i là số phức z. z’

z, z ‘ bằng nhau khi và chỉ khi:

5x + y = 2y - 1 và 5x = x - y

Suy ra: x = 1/7, y = 4/7.

Dạng 3: Tìm căn bậc hai của số phức

Cho số phức z = a + bi, w = x + yi được gọi là căn bậc hai của z, nếu w^2 = z.

  • Nếu a > 0, có 2 căn bậc hai là a.
  • Nếu a < 0, có 2 cặn bậc hai là |a|

Để giải dạng toán này, các em có thể áp dụng 1 trong 2 phương pháp sau nhé:

Phương pháp 1: Biển đổi z = a + bi dưới dạng bình phương của một số phức khác.

Phương pháp 2: Đẳ w = yi (x, y thuộc R) là một căn bậc hai của z, lúc này ta có:

w^2 = z khi và chỉ khi x^2 - y^2 = a và 2xy = b.

Ví dụ minh họa:

Cho z = 8 + 6i, tìm căn bậc 2 của z.

Lời giải:

Ta có, z = 8 + 6i = 9 + 6i - 1 = 3^2 +2.3i + i^2 = ( 3 + i)^2.

Vậy căn bậc 2 của z là (3 + i) và -(3 + i)

Dạng 4: Giải phương trình bậc 2 số phức

Đối với dạng toán này, các em chỉ cần nắm vững các bước sau là có thể dễ dàng tìm được đáp án rồi nè.

  • Bước 1: Đặt = B2 - 4AC.
  • Bước 2: Tìm căn bậc 2 của phương trình
  • Bước 3: Tìm nghiệm của , với điều kiện:

Nếu = 0, phương trình có nghiệm kép z1 = z2 = -B/2A

Nếu khác 0, phương trình có 2 nghiệm lần lượt là z1 = (B + )/2A và z2 = -((B + )/2A, với là căn bậc 2 của .

Ví dụ minh họa: Cho phương trình z^2 + z + 1 =0, tìm tập nghiệm của pt này.

Lời giải:

Đặt = 1^2 - 4.1.1 = -3, = i3 và - i3.

Vì = -3 < 0, nên phương trình đã cho có 2 nghiệm là:

z1 = (-1 + i3)/2 và z2 = (-1 - i3)/2

Suy ra, pt đa cho có tập nghiệm là

S = {(-1 - i3)/2; (-1 + i3)/2}.

Dạng 5: Giải phương trình số phức bậc cao

Đây là một dạng bài tập nhìn thì có vẻ phức tạp nhất, tuy nhiên, các em chỉ cần bình tĩnh sử dụng các phép toán biến đổi như đặt ẩn phụ, phân tích thành nhân tử,... để hạ bậc phương trình bậc cao và tiến hành giải như bình thường thôi nè.

Ví dụ minh họa:

Giải phương trình z^4 + 1 = 0

Lời giải:

Ta có z^4 + 1 = 0 z^4 - i^2 = 0 (z^2 - i).(z^2 +i) = 0

z^2 = i và z^2 = -i.

  • Với z^2 = i, ta có:

Gọi w = x + yi (x,y thuộc R) là căn bậc 2 của số phức z’ = i, lúc này:

w^2 = i x^2 - y^2 = 0 và 2xy = 1 x = y= 1/2; x = y = -1/2

z = 1/2 + (1/2)i và z = -1/2 - (1/2)i

  • Với z^2 = -i, ta có:

z’ = -i = i^2.i nên ta có căn bậc 2 của z’ là:

i.(1/2 + (1/2)i) = -1/2 + (1/2)i và i.(-1/2 - (1/2)i) = 1/2 - (1/2)i

Vậy phương trình đã cho có 4 nghiệm là:

z1 = 1/2 + (1/2)i, z2 = -1/2 - (1/2)i, z3 = 1/2 - (1/2)i và z4 = -1/2 + (1/2)i .

Dạng 6: Tìm giá trị lớn nhất, nhỏ nhất của số phức

Đây là một dạng toán khá là thú vị, thường xuyên xuất hiện trong các bài kiểm tra quan trọng, muốn giải được dạng toán này, các em cần nắm vững các kiến thức sau:

|z1 + z2| |z1| + |z2|, dấu = xảy ra khi z1 = kz2, k lớn hơn hoặc bằng 0.

|z1 - z2| |z1| - |z2|, dấu = xảy ra khi z1 = kz2, k nhỏ hơn hoặc bằng 0.

|z1 + z2| ||z1| - |z2||, dấu = xảy ra khi z1 = kz2, k nhỏ hơn hoặc bằng 0.

|z1 - z2| ||z1| - |z2||, dấu = xảy ra khi z1 = kz2, k lớn hơn hoặc bằng 0.

  • Để tìm min:

Áp dụng BĐT Cauchy: A^2 + B^2 (A + B)^2/2.

Áp dụng BĐT Mincopxki:

so phuc 7 jpg

Dấu = xảy ra khi a/b = x/y.

Áp dụng BĐT vecto:

so phuc 8 jpg

Dấu bằng xảy ra khi a/b = x/y

  • Để tìm max, áp dụng BĐT Bunhia Copski: (Ax + By)^2 (A^2 + B^2)(x^2 + y^2).

Ví dụ minh họa:

Cho z, thỏa mãn |z + 1 - 5i| = |z + 3 -i|, tìm số phức có modun min.

Lời giải:

Đặt z = z + yi, (x, y thuộc R) , suy ra z = x - yi.

Theo đề bài, ta có:

|z + 1 - 5i| = |z + 3 -i| |x + yi + 1 - 5i| = |x - yi + 3 - i|

|(x + 1) + (y - 5)i| =|(x+3) + (-y -1)i|

(x + 1)^2 + (y - 5)^2 = (x + 3)^2 + (y + 1)^2

x^2 + 2x + 1 + y^2 - 10y + 25 = 0

x^2 + 6x + 9 + y^2 + 2y + 1 = 0

-4x - 12y + 16 = 0

x = 4 - 3y

Vậy, lúc này, ta có:

|z| = x2+y2=(4-3y)2 + y2=10y2 -24y + 16

= 10(y-6/5)2+8/5210/5

Dấu bằng xảy ra khi y = 6/5 , x = 2/5.

Vậy modun nhỏ nhất của |z| = 210/5, khi z = 2/5 + 6/5i.

Cách giải bài tập số phức bằng máy tính bỏ túi Casio

Có một cách nhanh chóng giúp các em có thể dễ dàng giải các bài tập liên quan đến số phức đó chính là sử dụng máy tính bỏ túi Casio, hãy làm theo hướng dẫn sau nha:

  • Bước 1: Khởi động máy tính bỏ túi, bấm phím MODE + 2
  • Bước 2: Đợi màn hình hiển thị dòng chữ CMPLX và tiến hành nhập phương trình vào như thông thường thôi nè.

Một số tính năng quan trọng mà các em cần lưu ý là:

  • Phần ảo (i): Bấm phím ENG.
  • Lấy modun: Bấm phím Shift + hyp.
  • Số phức liên hợp (z): Bấm phím Shift + 2 + 2
  • Argument: Bấm phím Shift + 2 + 1
  • Phần thực: Bấm phím Shift + 2 + 3
  • Phần ảo: Bấm phím Shift +2 + 4
  • Đối sang dạng lượng giác: Bấm phím Shift + mũi tên xuống + 1
  • Muốn đổi sang dạng đại số: Bấm phím Shift + mũi tên xuống + 2

Ví dụ minh họa: Tìm z , biết z = (3i - 2)/(i + 1).

Lời giải:

  • Bước 1: Bấm MODE + 2, sau đó nhấn shift/2/2.
  • Bước 2: Nhập phép tính (3i - 2)/(i + 1) vào máy tính, lúc này màn hình sẽ hiển thị Conjg(3i - 2)/(i + 1), và cho ra kết quả là 1/2 - 5/2i

Bài tập liên quan đến số phức

Sau khi đã nắm vững lý thuyết và các dạng bài tập cơ bản, bây giờ các em hãy vận dụng chúng để giải một số các bài tập dưới đây nha:

  • Bài 1: Tìm số phức liên hợp của z = (3 - 2i).(2 + 3i)

Lời giải:

Ta có:

z = (3 - 2i).(2 + 3i) = 6 + 9i - 4i + 6 = 12 + 5i,

Vậy, số phức liên hợp của z là z = 12 - 5i

  • Bài 2: Tìm modun của số phức z = 2 - 3i

Lời giải:

Ta có, modun của z = 2 - 3i là |z| = 22+(-3)2=13

  • Bài 3: Tìm nghiệm z^3 - 8 = 0

Lời giải:

Ta có:

z^3 - 8 = 0 (z - 2)(z^2 + 2z + 4) = 0

z = 2 và z^2 + 2z + 4 = 0 z = 2 và (z + 1)^2 = -3

z = 2, z = -1 +3i, z = -1 - 3i.

Như vậy, qua bài viết trên, freetuts.net đã chia sẻ tất tần tật các kiến thức liên quan đến số phức, hy vọng qua đây, các em sẽ củng cố lại được phần kiến thức quan trọng này để có thể thành thục giải các bài toán liên quan.

Cùng chuyên mục:

Lăng trụ tam giác đều, định nghĩa, tính chất và bài tập

Lăng trụ tam giác đều, định nghĩa, tính chất và bài tập

Cách tính điểm xét học bạ 2025 nhanh và chính xác nhất

Cách tính điểm xét học bạ 2025 nhanh và chính xác nhất

Đường trung trực là gì? Tính chất, cách vẽ và bài tập áp dụng

Đường trung trực là gì? Tính chất, cách vẽ và bài tập áp dụng

Cách tính delta, delta phẩy và một số bài tập áp dụng

Cách tính delta, delta phẩy và một số bài tập áp dụng

20+ Đề thi toán lớp 2 học kì 2 cơ bản và nâng cao kèm đáp án

20+ Đề thi toán lớp 2 học kì 2 cơ bản và nâng cao kèm đáp án

Công thức tính thể tích khối tứ diện đều cạnh a và bài tập

Công thức tính thể tích khối tứ diện đều cạnh a và bài tập

3 Cách chứng minh hình thang cân lớp 8 và bài tập áp dụng

3 Cách chứng minh hình thang cân lớp 8 và bài tập áp dụng

Bất đẳng thức Cosi: Công thức, hệ quả và các bài tập

Bất đẳng thức Cosi: Công thức, hệ quả và các bài tập

Tổng hợp đề thi Toán lớp 4 học kì 2 cơ bản và nâng cao 2025

Tổng hợp đề thi Toán lớp 4 học kì 2 cơ bản và nâng cao 2025

Đường trung tuyến, định nghĩa, tính chất và các dạng bài tập

Đường trung tuyến, định nghĩa, tính chất và các dạng bài tập

Cách tính khoảng cách giữa 2 đường thẳng đầy đủ các dạng

Cách tính khoảng cách giữa 2 đường thẳng đầy đủ các dạng

Cách viết phương trình tiếp tuyến của đường tròn và bài tập

Cách viết phương trình tiếp tuyến của đường tròn và bài tập

Góc giữa hai đường thẳng, cách tính chuẩn và bài tập áp dụng

Góc giữa hai đường thẳng, cách tính chuẩn và bài tập áp dụng

Rút gọn biểu thức lớp 8 - 9, tổng hợp đầy đủ và bài tập

Rút gọn biểu thức lớp 8 - 9, tổng hợp đầy đủ và bài tập

Công thức tính khoảng cách đầy đủ và bài tập áp dụng

Công thức tính khoảng cách đầy đủ và bài tập áp dụng

Công thức tính diện tích hình phẳng và bài tập vận dụng

Công thức tính diện tích hình phẳng và bài tập vận dụng

Tính chất tích vô hướng, tích có hướng và bài tập liên quan

Tính chất tích vô hướng, tích có hướng và bài tập liên quan

Khái niệm tích vô hướng, tích có hướng của hai véc tơ và những tích…

Tổng hợp công thức lượng giác 9, 10, 11, 12 đầy đủ và chuẩn nhất

Tổng hợp công thức lượng giác 9, 10, 11, 12 đầy đủ và chuẩn nhất

Bảng hệ thống công thức lượng giác lớp 9, 10, 11 và 12 đầy đủ…

Công thức logarit lớp 12 cơ bản - nâng cao kèm bài tập

Công thức logarit lớp 12 cơ bản - nâng cao kèm bài tập

Tổng hợp các công thức logarit quan trọng trong chương trình đại số 12, từ…

Định lý cosin, các hệ quả quan trọng và bài tập áp dụng

Định lý cosin, các hệ quả quan trọng và bài tập áp dụng

Định lý cosin trong một tam giác được hiểu như sau, bình phương một cạnh…

Top